extension | φ:Q→Out N | d | ρ | Label | ID |
(C23×D7)⋊1C22 = C23⋊D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 56 | 8+ | (C2^3xD7):1C2^2 | 448,275 |
(C23×D7)⋊2C22 = 2+ 1+4⋊2D7 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 56 | 8+ | (C2^3xD7):2C2^2 | 448,778 |
(C23×D7)⋊3C22 = C2×C22⋊D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):3C2^2 | 448,940 |
(C23×D7)⋊4C22 = C23⋊3D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):4C2^2 | 448,946 |
(C23×D7)⋊5C22 = D4×D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):5C2^2 | 448,1002 |
(C23×D7)⋊6C22 = C24⋊2D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):6C2^2 | 448,1042 |
(C23×D7)⋊7C22 = C24⋊3D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):7C2^2 | 448,1043 |
(C23×D7)⋊8C22 = C24⋊4D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):8C2^2 | 448,1047 |
(C23×D7)⋊9C22 = C14.372+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):9C2^2 | 448,1058 |
(C23×D7)⋊10C22 = D28⋊19D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):10C2^2 | 448,1062 |
(C23×D7)⋊11C22 = C14.1202+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):11C2^2 | 448,1106 |
(C23×D7)⋊12C22 = C42⋊22D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):12C2^2 | 448,1136 |
(C23×D7)⋊13C22 = D28⋊11D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):13C2^2 | 448,1170 |
(C23×D7)⋊14C22 = D4×C7⋊D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):14C2^2 | 448,1254 |
(C23×D7)⋊15C22 = C24⋊7D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):15C2^2 | 448,1257 |
(C23×D7)⋊16C22 = C2×C24⋊D7 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):16C2^2 | 448,1293 |
(C23×D7)⋊17C22 = C2×D4⋊6D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):17C2^2 | 448,1371 |
(C23×D7)⋊18C22 = C2×D4⋊8D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7):18C2^2 | 448,1376 |
(C23×D7)⋊19C22 = D7×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 56 | 8+ | (C2^3xD7):19C2^2 | 448,1379 |
(C23×D7)⋊20C22 = D7×C22≀C2 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 56 | | (C2^3xD7):20C2^2 | 448,1041 |
(C23×D7)⋊21C22 = C2×C23⋊D14 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7):21C2^2 | 448,1252 |
(C23×D7)⋊22C22 = C23×D28 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7):22C2^2 | 448,1367 |
(C23×D7)⋊23C22 = C22×D4×D7 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7):23C2^2 | 448,1369 |
(C23×D7)⋊24C22 = C23×C7⋊D4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7):24C2^2 | 448,1384 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C23×D7).1C22 = D14⋊C4⋊5C4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).1C2^2 | 448,203 |
(C23×D7).2C22 = C2.(C4×D28) | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).2C2^2 | 448,204 |
(C23×D7).3C22 = (C2×C28)⋊5D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).3C2^2 | 448,205 |
(C23×D7).4C22 = (C2×Dic7)⋊3D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).4C2^2 | 448,206 |
(C23×D7).5C22 = (C2×C4).20D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).5C2^2 | 448,207 |
(C23×D7).6C22 = (C2×C4).21D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).6C2^2 | 448,208 |
(C23×D7).7C22 = (C22×D7).9D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).7C2^2 | 448,209 |
(C23×D7).8C22 = (C22×D7).Q8 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).8C2^2 | 448,210 |
(C23×D7).9C22 = (C2×C28).33D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).9C2^2 | 448,211 |
(C23×D7).10C22 = D7×C23⋊C4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 56 | 8+ | (C2^3xD7).10C2^2 | 448,277 |
(C23×D7).11C22 = (C2×C4)⋊6D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).11C2^2 | 448,473 |
(C23×D7).12C22 = (C2×C42)⋊D7 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).12C2^2 | 448,474 |
(C23×D7).13C22 = C24.13D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).13C2^2 | 448,491 |
(C23×D7).14C22 = C23.45D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).14C2^2 | 448,492 |
(C23×D7).15C22 = C24.14D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).15C2^2 | 448,493 |
(C23×D7).16C22 = C23⋊2D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).16C2^2 | 448,494 |
(C23×D7).17C22 = C23.16D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).17C2^2 | 448,495 |
(C23×D7).18C22 = (C2×D28)⋊10C4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).18C2^2 | 448,522 |
(C23×D7).19C22 = D14⋊C4⋊7C4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).19C2^2 | 448,524 |
(C23×D7).20C22 = (C2×C4)⋊3D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).20C2^2 | 448,525 |
(C23×D7).21C22 = (C2×C28).289D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).21C2^2 | 448,526 |
(C23×D7).22C22 = (C2×C28).290D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).22C2^2 | 448,527 |
(C23×D7).23C22 = (C2×C4).45D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).23C2^2 | 448,528 |
(C23×D7).24C22 = C23.28D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).24C2^2 | 448,747 |
(C23×D7).25C22 = C24.21D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).25C2^2 | 448,757 |
(C23×D7).26C22 = (C22×Q8)⋊D7 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).26C2^2 | 448,765 |
(C23×D7).27C22 = C2×C28⋊4D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).27C2^2 | 448,928 |
(C23×D7).28C22 = C2×C4.D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).28C2^2 | 448,929 |
(C23×D7).29C22 = C2×C42⋊2D7 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).29C2^2 | 448,931 |
(C23×D7).30C22 = C24.24D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).30C2^2 | 448,939 |
(C23×D7).31C22 = C24.27D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).31C2^2 | 448,943 |
(C23×D7).32C22 = C2×Dic7.D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).32C2^2 | 448,944 |
(C23×D7).33C22 = C2×C22.D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).33C2^2 | 448,945 |
(C23×D7).34C22 = C2×C4⋊C4⋊D7 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).34C2^2 | 448,965 |
(C23×D7).35C22 = C42⋊7D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).35C2^2 | 448,974 |
(C23×D7).36C22 = C42⋊9D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).36C2^2 | 448,978 |
(C23×D7).37C22 = C42⋊10D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).37C2^2 | 448,980 |
(C23×D7).38C22 = C42⋊11D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).38C2^2 | 448,998 |
(C23×D7).39C22 = D28⋊23D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).39C2^2 | 448,1003 |
(C23×D7).40C22 = D4⋊5D28 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).40C2^2 | 448,1007 |
(C23×D7).41C22 = C42⋊16D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).41C2^2 | 448,1009 |
(C23×D7).42C22 = C42⋊17D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).42C2^2 | 448,1013 |
(C23×D7).43C22 = C24.33D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).43C2^2 | 448,1044 |
(C23×D7).44C22 = C24.34D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).44C2^2 | 448,1045 |
(C23×D7).45C22 = D7×C4⋊D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).45C2^2 | 448,1057 |
(C23×D7).46C22 = C14.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).46C2^2 | 448,1060 |
(C23×D7).47C22 = C14.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).47C2^2 | 448,1063 |
(C23×D7).48C22 = D28⋊20D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).48C2^2 | 448,1065 |
(C23×D7).49C22 = C14.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).49C2^2 | 448,1066 |
(C23×D7).50C22 = C14.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).50C2^2 | 448,1070 |
(C23×D7).51C22 = C14.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).51C2^2 | 448,1073 |
(C23×D7).52C22 = D28⋊21D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).52C2^2 | 448,1083 |
(C23×D7).53C22 = C14.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).53C2^2 | 448,1087 |
(C23×D7).54C22 = C14.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).54C2^2 | 448,1090 |
(C23×D7).55C22 = C14.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).55C2^2 | 448,1097 |
(C23×D7).56C22 = D7×C22.D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).56C2^2 | 448,1105 |
(C23×D7).57C22 = C14.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).57C2^2 | 448,1107 |
(C23×D7).58C22 = C14.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).58C2^2 | 448,1110 |
(C23×D7).59C22 = C14.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).59C2^2 | 448,1111 |
(C23×D7).60C22 = C14.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).60C2^2 | 448,1112 |
(C23×D7).61C22 = C14.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).61C2^2 | 448,1119 |
(C23×D7).62C22 = D7×C4.4D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).62C2^2 | 448,1126 |
(C23×D7).63C22 = C42⋊18D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).63C2^2 | 448,1127 |
(C23×D7).64C22 = D28⋊10D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).64C2^2 | 448,1129 |
(C23×D7).65C22 = C42⋊20D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).65C2^2 | 448,1131 |
(C23×D7).66C22 = C42⋊21D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).66C2^2 | 448,1132 |
(C23×D7).67C22 = D7×C42⋊2C2 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).67C2^2 | 448,1156 |
(C23×D7).68C22 = C42⋊23D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).68C2^2 | 448,1157 |
(C23×D7).69C22 = C42⋊24D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).69C2^2 | 448,1158 |
(C23×D7).70C22 = C42⋊25D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).70C2^2 | 448,1164 |
(C23×D7).71C22 = D7×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).71C2^2 | 448,1167 |
(C23×D7).72C22 = C42⋊26D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).72C2^2 | 448,1168 |
(C23×D7).73C22 = C42⋊28D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).73C2^2 | 448,1173 |
(C23×D7).74C22 = C2×C23.23D14 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).74C2^2 | 448,1242 |
(C23×D7).75C22 = C2×C28⋊7D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).75C2^2 | 448,1243 |
(C23×D7).76C22 = C2×Dic7⋊D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).76C2^2 | 448,1255 |
(C23×D7).77C22 = C2×C28⋊D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).77C2^2 | 448,1256 |
(C23×D7).78C22 = C2×C28.23D4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 224 | | (C2^3xD7).78C2^2 | 448,1267 |
(C23×D7).79C22 = C14.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).79C2^2 | 448,1282 |
(C23×D7).80C22 = C14.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D7 | 112 | | (C2^3xD7).80C2^2 | 448,1283 |
(C23×D7).81C22 = C22.58(D4×D7) | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).81C2^2 | 448,198 |
(C23×D7).82C22 = (C2×C4)⋊9D28 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).82C2^2 | 448,199 |
(C23×D7).83C22 = D14⋊C42 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).83C2^2 | 448,200 |
(C23×D7).84C22 = D14⋊(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).84C2^2 | 448,201 |
(C23×D7).85C22 = D14⋊C4⋊C4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).85C2^2 | 448,202 |
(C23×D7).86C22 = C4×D14⋊C4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).86C2^2 | 448,472 |
(C23×D7).87C22 = C23.44D28 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).87C2^2 | 448,489 |
(C23×D7).88C22 = C24.12D14 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).88C2^2 | 448,490 |
(C23×D7).89C22 = C4⋊(D14⋊C4) | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).89C2^2 | 448,521 |
(C23×D7).90C22 = D14⋊C4⋊6C4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).90C2^2 | 448,523 |
(C23×D7).91C22 = C2×C42⋊D7 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).91C2^2 | 448,925 |
(C23×D7).92C22 = C2×C4×D28 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).92C2^2 | 448,926 |
(C23×D7).93C22 = C2×D7×C22⋊C4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).93C2^2 | 448,937 |
(C23×D7).94C22 = C2×Dic7⋊4D4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).94C2^2 | 448,938 |
(C23×D7).95C22 = C2×D14.D4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).95C2^2 | 448,941 |
(C23×D7).96C22 = C2×D14⋊D4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).96C2^2 | 448,942 |
(C23×D7).97C22 = C2×C4⋊C4⋊7D7 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).97C2^2 | 448,955 |
(C23×D7).98C22 = C2×D28⋊C4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).98C2^2 | 448,956 |
(C23×D7).99C22 = C2×D14.5D4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).99C2^2 | 448,958 |
(C23×D7).100C22 = C2×C4⋊D28 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).100C2^2 | 448,959 |
(C23×D7).101C22 = C2×D14⋊Q8 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).101C2^2 | 448,961 |
(C23×D7).102C22 = C2×D14⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).102C2^2 | 448,962 |
(C23×D7).103C22 = D7×C42⋊C2 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).103C2^2 | 448,973 |
(C23×D7).104C22 = C42⋊8D14 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).104C2^2 | 448,977 |
(C23×D7).105C22 = C4×D4×D7 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).105C2^2 | 448,997 |
(C23×D7).106C22 = C42⋊12D14 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).106C2^2 | 448,1000 |
(C23×D7).107C22 = C4⋊C4⋊21D14 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).107C2^2 | 448,1059 |
(C23×D7).108C22 = D7×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).108C2^2 | 448,1079 |
(C23×D7).109C22 = C4⋊C4⋊26D14 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).109C2^2 | 448,1080 |
(C23×D7).110C22 = C4⋊C4⋊28D14 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).110C2^2 | 448,1109 |
(C23×D7).111C22 = C22×D14⋊C4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).111C2^2 | 448,1240 |
(C23×D7).112C22 = C2×C4×C7⋊D4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).112C2^2 | 448,1241 |
(C23×D7).113C22 = C2×C28⋊2D4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).113C2^2 | 448,1253 |
(C23×D7).114C22 = C2×D14⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).114C2^2 | 448,1266 |
(C23×D7).115C22 = (C2×C28)⋊15D4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).115C2^2 | 448,1281 |
(C23×D7).116C22 = C22×C4○D28 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).116C2^2 | 448,1368 |
(C23×D7).117C22 = C22×D4⋊2D7 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).117C2^2 | 448,1370 |
(C23×D7).118C22 = C22×Q8⋊2D7 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 224 | | (C2^3xD7).118C2^2 | 448,1373 |
(C23×D7).119C22 = C2×D7×C4○D4 | φ: C22/C2 → C2 ⊆ Out C23×D7 | 112 | | (C2^3xD7).119C2^2 | 448,1375 |
(C23×D7).120C22 = D7×C2.C42 | φ: trivial image | 224 | | (C2^3xD7).120C2^2 | 448,197 |
(C23×D7).121C22 = D7×C2×C42 | φ: trivial image | 224 | | (C2^3xD7).121C2^2 | 448,924 |
(C23×D7).122C22 = C2×D7×C4⋊C4 | φ: trivial image | 224 | | (C2^3xD7).122C2^2 | 448,954 |
(C23×D7).123C22 = D7×C23×C4 | φ: trivial image | 224 | | (C2^3xD7).123C2^2 | 448,1366 |
(C23×D7).124C22 = C22×Q8×D7 | φ: trivial image | 224 | | (C2^3xD7).124C2^2 | 448,1372 |